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Overview

* Motivation
* Introduction and Objective

» Contributions:
- Power Grid Analysis using Probabilistic Approach
- Design Space Exploration of PG Interconnect
- ML Approach for PG Design
- ML Approach for Aging Prediction

 Conclusion and Future works



Motivation

» Apple's new iPhone/iPad bionic processor in Sept 2019*
- 8.5 hillion transistors (A13) /10 billion transistors (A12x)
- Die area: 98.48 mm?2 (A13) /122 mm? (A12x)
- 0.7 V supply voltage (2 gen TSMC 7nm Tech)

e 20 billion or more transistors in future mobile SoC.

* Challenge is distributing 0.7 V to 20 billion or more
transistors

» Better design methodology required.
« EDA/VLSI Design comes to rescue.
 To reduce design cycle time and manpower.

Courtesy: *https:/len.wikichip.org/wiki/apple/ax/al3



VLSI Design objective

*Objective: To create the layout from the design
specification.

Requirement: To decrease the human effort in the
design process and to automate and make the design
cycle faster.

What is VLSI Physical Design?

The process of converting the specification of an
electrical circuit called netlist into a geometric
representation called layout.

* The layout must take optimum silicon area.
« Simultaneously, other issues must be minimized.




VLSI Physical Design Flow
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Power Grid Network Connections
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Power Grid Network Connections
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Power Grid Network Connections
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Power Grid Modeling
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Fig: Power Grid Network and its equivalent resistive networks
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Power Grid Modeling

2 2@ :
L Using KCL & KVL,
System of Linear
$ S s @ Equations are formed:
I [G][V] = [I] formed
2 s 2
vdd
Challenge is to solve for large power grid networks. For eg: think 1

of power grid design of Apple A12x SoC with 10 billion transistors



Design Challenges in Power Grid

* IR drop

o E I ectrom ig rati O Figure: IR drop map of IBM processor
[Fie o sove o -

w | done with 2D plot

Courtesy: IBM 12




Design Challenges in Power Grid:

Electromigration

Cathode

Figure: Metal wire cross section

Courtesy: IEEE

Figure: SEM Image of Void (open circuit) and hillock (short circuit)



On-Chip Power Planning
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Previous Works

Early 2000s: Many works on Power Grid Analysis, Few works on
Area Optimization of Power Grid. [DAC'00/01/02/03,
ICCAD'05/08, DATE'06/08]

Early 2010s: Works mostly focused on Fast Power Grid
Analysis/Verification using Linear Algebric Methods.[DATE'11/13,
ICCAD'10/12/13, DAC'11/12].

Since 2013: Electromigration Issues in Power Grid
[DAC'13/14/16/17, ICCAD'13/16/17/19, DATE'17]

Recently, 2018/19/20: Learning-based approaches in different
Issues in Power Grid Design. [ICCAD'19, DATE'19]

So Why Learning Approaches now?

15



Al/ML History

Courtesy: Nvidia
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Since an early flush of optimism in the 1950s, smaller subsets of artificial intellgigence — first machin 16
learning, then deep learning, a subset of machine learning — have created ever large disruptions



What is Al/ML?

 Artificial Intelligence: Intelligence demonstrated by
machines.

« Machine Learning: Inlelligence demonstrated by machines
using its previous experiences.

» Supervised Learning: Labelled data.

« Unsupervised Learning: Unlabelled data.

Traditional programming

Input —»

[Computation] — Results
Program —»

Figure: Difference between Traditional programming
and Machine Learning

Machine learning

Input —»
Desired Computation | — Program
result .




Why AI/ML for PG Design? Why Now?

* Designs are getting complex and large.
* Big data Is associated with each design.
* Time-consuming design cycle.

* Involves vast human resource.

* New technology nodes evolve In every alternate year.
- 14nm in 2014, 10nm in 2016, 7nm in 2018, 5/3nm in 2020.

* AI/ML can help in automation/semi-automation.

* Recently, Placement, Routing problems are also
solved using Al/ML.
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Why ML for EDA? Why Now?

* Intelligent Design of Electronic Assets (IDEA)
orogram sponsored by DARPA in 2018.

* It's under an initiative of $1.5 billion.
* Involve many US universities and industry.

* IDEA aims to create a “no human in the loop”
24 hour turnaround layout generator for
System-On-Chips, System-In-Packages, and
Printed Circuit Boards.

https://spectrum.ieee.orgl/tech-talk/Isemiconductors/design/darpa-picks-its-first-set-of-
winners-in-electronics-resurgence-initiative



https://spectrum.ieee.org/tech-talk/semiconductors/design/darpa-picks-its-first-set-of-winners-in-electronics-resurgence-initiative
https://spectrum.ieee.org/tech-talk/semiconductors/design/darpa-picks-its-first-set-of-winners-in-electronics-resurgence-initiative

Thesis Objective & Problem Statement

* Objective: Designing Relibale On-Chip Power Grid.

* Finding the hotspots for a large scale power grid network is
challenging task.

 Problem 1: Solving power grid network in efficient way with
better runtime.

* Problem 2: Obtaining optimum power grid design parameters.

 Problem 3: Calculating the Electromigration Aging time of the
power grid network during the design time.

 Our Main focus is Al & ML-based approaches.

20



Thesis Contributions

* First Contribution: Power Grid Analysis
using Probabillitisc Approach

 Second Contribution: Design Space
Exploration of PG Interconnects

* Third Contribution: Machine Learning
Approach in PG Design

* Fourth Contribution: Machine Learning
Approach in Aging Prediction of PG

21



Simulations and Experimental setup

* All the methods are implemented in C/C++, Python.
* OS : Ubuntu 14.04/16.04/CentOS 6.

« Machine: Intel E5-2650/15.

 Memory: 32/64 GB

é N B 4 B
Proposed
Data structure —> Method —> Results
i : ) ((CIC++/Python) | g i
4 A
PG benchmark
circuits
¢ (Spice netlist) | |
e N N z 3
Proposed
Datasets [—> Method —> Results
& g \(C/C++/Python) ! g R




First Contribution: Power Grid Analysis using

Probabilitisc Approach

* Power grid network Is converted to a
unweigthed graph.

* Objective Is to speedup power grid
analysis process.

* Levy Flight-based Probabilistic Method Is
used for traversing the graph.

e Results.

* Parts of work is published by Dey et al. “Markov Chain Model using Levy Flight for VLSI 23
Power Grid Analysis” in VLSID’17.



Single Node of PG Network
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Previous Work*

I : 3 , * Circuit Equation
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Our Contributions

* We try to remove the self-loops of Random Walks.

* Further, we adapted jumping strategy to speedup the
convergence.

* Levy Flight is used to incorporate the jumping
strategy.

* The reward is modified by calculating the effective
resistance.

 To validate the method the result is tested for 49M
nodes power grid network.
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Our Contributions

I 2 3 4
¢ ® ¢ ®
5 6 7 3
o—@—0—90
9 10 B 12
¢ ® ® ®
END

® ® @ o

I3 14 I5 16

I

m; = z .mo = Vpp, f(x) =V,

27



Experimental Results*

TABLE 1
SPEEDUP ANALYSIS OF PROPOSED METHOD USING LEVY FLIGHT oN CPU
PG Circuits | trw (8) | tas (s) | tHLs (5) | tievy (8) Speedup Speedup Speedup
(tRIerJtEevy) (tGSthIevy) (tHLSthEevy)

peckt_40K 0.30 0.36 0.82 0.17 1.76 % 2.11x 4.82 %
peckt_90K 0.65 1.62 1.84 0.30 2.16x 5.40 % 6.13x
pgckt_250K 1.92 6.78 6.06 0.86 2.23x 7.88 % 7.04 x
peckt_640K 7.98 19.31 20.00 2.19 3.64x 8.81x 0.13x
peckt 1M 18.95 27.85 30.55 3.51 5.39x 7.93 % 11.26x
peckt_4M 297.21 117.76 154.78 14.61 20.34 < 8.06 % 10.59x

peckt_OM 1513.4 272.74 349.66 33.88 44.66 x 8.05x 10.32x
pegckt_16M 3326.44 486.03 651.15 61.49 54.09 x 7.90 x 10.58 %
pgckt_25M 6263.80 760.10 1034.36 112.85 55.50x 6.73 x 0.16x
pgckt_36M 9800.35 1094.01 1562.71 167.63 58.46 % 6.52 % 9.32x
pgckt_49M 14065.90 1498.20 2430.38 232.91 60.39 x 6.43 x 10.43 %

Max speedup ~60X

over RW method

28



First Contribution Summary

* Fast power grid method is proposed.

* WWe have achieved max. ~60X speedup
over RW method for 49M node PG circuit.

» Solutions of the proposed method is
similar to RW method (3-4% error).

29



Second Contribution: Design Space Exploration

of PG Interconnects*

* First IR drop minimization problem using
metaheuristics.

* First Multiobjective DSE for PG Design
* Problem Formulation

* Proposed DSE Framework

* Results.

30
* Parts of work is published by Dey et al. ISVLSI'18. & Elsevier MICPRO 2021



Problem Formulation: IR Drop Minimization
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Problem Formulation: IR Drop-Area Minimization

* P represents the set of nodes and Q represents the
set of branches
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Proposed Framework

Power Grid
Model/Netlist

> IR drop analysis
using KLU solver

o To obtain the I, V of all the branches
and nodes of Power grid network

e To obtain the hotspots/violated
nodes created by IR drop

Setup for
Minimization

¢ Initialize parameters for NSGA-II

e Give branch current ranges and
branch widths as input to the NSGA-
Il framework.

Update the setup with the
already minimized value
selected from the Pareto
front. And repeat for all other
subcircuits.

Minimization of IR drop-
area for a subcircuit of
Power Grid Network
using NSGA-II

inimization done for al
subcircuits?

e To obtain the Pareto-front for optimum
IR drop-area under the constraints of
section 3.3 for power grid network.

e Select an appropriate point from the
Pareto front for optimum design.

Optimized IR drop-
area trade-off

33



Pareto Front of a Subcircuit of iompgl
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Results

~7.31% reduction in worst-case IR drop
~8.51% reduction in metal routing area

IR Drop Plot IR Drop Plot
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Figure: Two instances of overall IR drop map for ibmpg2 benchmark

circuit. (a) Before optimization. (b) After using the proposed

framework.
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Second Contribution Summary

 DSE framework helps in obtaining IR drop
and Area minimization for PG designs.

* These estimations help designer to obtain
initial idea about the design parameters.

36



Third Contribution: Machine Learning Approach

iIn PG Design*

* First ML Model for PG Design
 Problem Formulation

* Feature Extraction

* Training Data Generation
* Proposed Learning Model
* Results

* Published by Dey et al. “PowerPlanningDL: Reliability-Aware Framework for On-Chip 37
Power Grid Design using Deep Learning” in DATE’20.



Overview of ML Approach

Feature Extraction

Historical Power
Grid Design Data

)
N—

New Power Grid
Data and

Test Dataset

- O

Trainina Dataset _ :
> raining Datase Training Using

Training Dataset
preparation \/_\

Neural Network

Trained Model

Predicted Power
Grid Design

"
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Feature Selection & Training Data

e r2score Is evaluated

« X coordinate « Y coordinate ey « Combined features

* Power Grid Designs T e Y eSS
Extracted from the IBM ' ,.,.5;”::“""% 'é,._,:\-s’%:*. L«c.,,;c.g i

'.‘. \’o-f' (g

processors are employed. o8 | B SRS LR R R
. o) 0.7

* Label dataset is prepared for 5 _ | j
supervised learning. . I, S RO SNt
os5] & .,_-.-: .u.'. '._-.-.. "_ ‘-; e 'c;'-'-‘:;r*£:; ;- .:-‘.: :/
 Input features: (X,y), l4 = 5 Eéﬁﬁgﬁy" %;%%g
sy ¥k ,
! &. SR,

« Output feature: w, 0.2 ;
0 200 400 600 800 1000

Interconnect number
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Problem Formulation

 Problem 1: Given (x,y) coordinate and |, then predict
metal width required which satisfy IR and EM margin.

 Problem 2: Given the width and |, predict IR drop of
the PG interconnect.

40



ML Model

10 hidden layers.
« Adam optimizer.

* Trained with the generated
training data.

» Testdata set Is created by
perturbing training dataset
and performance is tested.

41



ML Model

Algorithm 1: Wire width prediction by NN
Feature extraction

(X coordinate, Y coordinate, Switching current) Input: Training Set
Output: w; and gradient

1 ForwardPropagation(X coordinate, Y coordinate, [4, w;)
. Trainin
IBM PG Netlist Datase% Training Using 2 .
Neural Network 3 return loss function f
\_/-\ 4 %
Barurbation 5 BackwardPropagation()

6
7 return gradient

Perturbed PG . 8 }

Netlist Test Dataset Trained Model

-

Do processing for Predict width of the
IR drop prediction PG interconnect

Algorithm 2: IR drop prediction

Input: Predicted width w;
Output: Predicted IR drop
1 From switching current /4 and w;;

e ou s 2 Use kirchoff’s law to predict IR drop.

and r2 score

Predicted IR
drop

42



Experimental Results:

Time (sec) Speedup

PG circuits | Conventional | PowerPlanningDL Tlgijj::;:;:zfm
bmpgl 6.85 3.06 1.92x
1bmpg2 23.46 11.88 1.97 x
1ibmpg3 29.50 8.07 3.59 x
1bmpg4 H2.4 11.83 4.42 X
ibmpgd 74.80 12.74 .87 %
1bmpg6 97.5 17.41 5.60 x
ibmpgnewl 102.58 21.50 4.77 X
ibmpgnew? 48.60 10.86 4.47 X

~5-6X

max.

43
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Experimental Results: IR drop map

Same quality of
results using ML!

IR Drop Plot

IR Drop Plot
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Third Contribution Summary

« Same quality of results using ML.
* Fast convergence (~5-6X max. Speedup)
* Low overhead (~2% error)
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Fourth Contribution: Machine Learning

Approach in Aging Prediction of PG*

* First ML Model for Aging Prediction of PG
 Problem Formulation

* Feature Extraction

* Training Data Generation

* Proposed Learning Model

* Proposed Failure Criterion

* Results show improvement than SOTA

* Published by Dey et al. “Machine Learning Approach for Fast Electromigration Aware 46
Aging Prediction in Incremental Design of Large Scale On-Chip Power Grid Network” in
ACM TODAES.



Overview of the ML Model

Training Data
Generation from Power
Grid Netlist and Feature
Selection

Training, s MTTF of the

Machine _
Learning Model _ Power Grid
interconnects

Learned Model

Training Data

Test Data Generation by
perturbing the Power Grid
Netlist

Test Data
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Feature Selection & Training Data

e r2score Is evaluated

* Power Grid Designs Extracted from the IBM processors are
employed.

» Label dataset is prepared for supervised learning.
* |nput features: J, L, T, IR drop of the interconnect

e Output feature: MTTF or Mean Lifetime.

48



Proposed Method Flow

...........................................................

! Feature extraction !
: (J, L, T, IR drop, and MTTF of PG interconnects)

PG Analysis

IBM PG Netlist | | using KLU YTt . |Training Dataset UEEtTil Ukl
: - Neural Network
' Solver (C++) : (Python)
] (C++) : y
Perturbation

Perturbed PG Incremental PG
Netlist Analysis using Test Dataset Trained Model
KLU Solver

\/\ (C++) \/\

\4

Logistic _ Label the ?’gar::tv“c:;rklzbc:s?de Predict MTTF of
Regression-based Interconnects as et rer s those PG
Classification mortal/non-mortal interconnects

criterion
(Python) \/\ (Python) (Python)

Mortal
Interconnects

Calculate MSE
and r2 score

MTTF of the PG
grid
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Experimental Results : CPU Runtime

CPU Runtime (f) (Hours) Speedup
Methods TCAD2016 [2] | ICCAD2017 (3] | TCAD2018 [4] | IRPS2019 [5| | Proposed " ton e iy
(tr) (tcn) (tc) (tn) (tarr) e o P P
PG Circuits
PG1 0.02 0.02 0.001 0.000166 0.0001 200 x 200x 10x 1.66x
ibmpgl 0.05 0.03 0.003 0.01000 0.0003 166.66 x 100 10x | 33.33 %
ibmpg?2 0.11 0.31 0.04 0.02000 0.002 55 % 155 20 % 10x
ibmpg3 5.83 4.27 0.41 0.07000 0.009 G47.77 % 610x | 45.55x | T7.77x
ibmpg4 14.71 6.81 2.31 0.11000 0.007 2101.42x | 972.85x | 330x | 15.71x
ibmpgh 0.69 0.25 0.06 0.03000 0.006 115% 41.66 % 10 Hx
ibmpg6 1.75 2.07 0.79 0.23330 0.009 194.44 % 230x | 8T.TTx | 25.92x
ibmpgnewl 16.78 0.42 1.24 0.08000 0.013 1290.76x | 32.06x | 95.38x | 6.15x%
ibmpgnew?2 15.32 2.60 0.43 0.06000 0.008 1915x% 325x | B3.Thx | T.50%
PG2 10.94 1.12 1.06 0.10166 0.010 1094 % 112x 106x | 10.06x
PG3 - - - 0.13666 0.04200 - - - 3.25x%
PG4 - - - 0.25666 0.10100 - - - 2.54x%
Avg. Speedup 778 x 277.85x | 76.84x | 10.74x

Our proposed ML-approach achieved significant speedup than all SOTA. 50



Experimental Results : MTTF

MTTF (u) (years)

Methods TCAD2016 [2] | ICCAD2017 [3] | TCAD2018 [4] | IRPS2019 [5| | Proposed

(1) (1cn) (hc) (1) (parr)
PG Circuits

PG1 14.01 6.10 8.51 6.5 13.25
bmpgl 12.55 6.50 10.91 7.0 12.10
bmpg2 18.75 6.78 10.11 12.1 12.55
ibmpg3 31.96 6.66 9.95 6.7 12.25
ibmpg4 33.39 9.83 11.95 16.7 17.48
ibmpgh 25.16 6.54 6.63 6.3 10.33
bmpg6 19.87 9.53 11.96 11.2 12.41
tbmpgnewl 25.96 13.24 11.64 13.2 14.56
tbmpgnew?2 21.80 2.72 6.72 7.3 13.24
PG2 17.85 8.32 9.32 10.3 11.21
PG3 - - - 7.2 10.51
PG4 - - - 6.8 8.47

Accuracy wise our ML approach is the closest to accurate method of
TCAD2016, and better than all other SOTA results.
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Fourth Contribution Summary

ML approach can predict EM aging in PG
design.

« MTTF value compared with accurate model,
and compared to the other SOTA models.

* Proposed ML framework is faster than all
SOTA models.

» Speeding up the MTTF prediction process
helps in overall design sign-off time

52



Conclusions and Future works

A fast and more effective power grid analysis technique is
proposed, reducing the solving time of the circuit.

* We also attempt to design the power grid interconnects more
efficiently by obtaining an optimum trade-off.

* This study includes machine learning techniques for power
grid design and Electromigration-aware aging prediction of
the power grid network.

» Works of the thesis will help the power grid designer to obtain
an initial idea of different design metrics and to handle the
reliability issues in the process of designing cost-effective as
well as reliable chip.
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