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Abstract—Due to the resistance of metal wires in power grid
network, voltage drop noise occurs in the form of IR drop
which may change the output logic of underlying circuits and
may affect the reliability performance of a chip. Further, it
is necessary to handle different reliability constraints while
designing a robust power grid network for a chip. Any violation
of such constraints may increase the occurrences of IR drop.
Therefore, there is a need to minimize the IR drop without
violating the reliability constraints. In this paper, the IR drop
minimization problem is formulated as a single objective large-
scale variable minimization problem subjected to different
reliability constraints, such as IR drop constraints, electro-
migration constraints, minimum width constraints, metal area
constraints. At first, the large-scale minimization problem is
divided into several subproblems using a divide and conquer
based decomposition strategy, called Cooperative Coevolution.
Secondly, each subproblem is solved using self-adaptive differ-
ential evolution with neighborhood search. Finally, electromi-
gration (EM) assessment is done for the power grid networks
using Black’s equation to demonstrate the optimism in the
predicted time-to-failure (TTF) after minimization of the IR
drop.

Keywords-Cooperative Coevolution, Electromigration, IR
drop noise, Large Scale Optimization, Power Grid Network,
Reliability-Constraints, VLSI.

I. INTRODUCTION

Power grid networks of VLSI chip are becoming larger

than ever with the scaling of technology node, which in-

troduces the added design challenges and makes the design

phase time-consuming and iterative. Generally, IR drop noise

occurs in the power grid due to the metal resistance of the

grid, which is one of the major concern while designing the

power grid [1]. As the IR drop noise can change the voltage

level of a logic block, hence it is essential to ensure the

IR drop noise below a threshold level. The underlying logic

block can malfunction if the IR drop noise exceeds a certain

threshold level. Furthermore, EM-induced increase in metal

resistances can also change the IR drop level [2]. Therefore,

it is necessary to locate the IR drop noises and minimizing

the IR drop noises occur in the power grid network.

The IR drop noises are located by doing power grid

analysis of the whole network which is a process by which

currents and voltages of the equivalent model of the power

grid network are determined. In general, voltage drop noise

violations are occurred by IR drop (due to the resistances of

the metal lines) and Ldi/dt voltage drop (due to inductances

of the metal lines and C4 bumps) noises. In this paper, we

limit this work only for IR drop minimization based on

metal width reduction. IR drop generally depends on the

current flowing through the metal lines and the resistances

of the metal lines. The amount of current flowing through

the metal line is determined by the current drawn by the

underlying functional blocks. Therefore, it is necessary to

limit the flow of currents through the metal lines, to prevent

any occurrences of EM. On the other hand, resistances of

the metal lines depend on the width and length of the metal

layer. If the length is kept constant, then by increasing the

width of the metal layers the resistance of the metal lines

can be reduced which will force the IR drop to decrease

further.

In industry, there are many tools for IR drop analysis,

such as RedHawkTM , PrimeRailTM , and TotemTM .

Therefore, using these tools power grid analysis is done and

IR drop noises are located. Layout designers try to minimize

the IR drop in the located area manually, by increasing the

metal width (but confining within the design rules) of the

power and ground lines, to decrease the resistances which

reduce IR drop. After varying the widths of the metal lines,

designers have to perform power grid analysis again to

know whether the hotspots created by IR drop is below

a certain threshold. And this process continues iteratively

until the IR drop comes below the threshold level. As this

is a time-consuming process, the manual design of power

grid network after analysis becomes cumbersome. Also, no

automated tools in the industry are available which can

minimize IR drop in power grid network. Therefore, in

this paper, we have constructed the IR drop minimization

problem as a large-scale optimization problem. We also

tried to propose a framework using Cooperative coevolution

for minimizing the IR drop by varying the metal layer

dimensions of power grid network which would help in

automatically projecting metal widths within safer IR drop

noise level.

To the best of our knowledge, this paper is the first to

study the minimization of IR drop for power grid networks

by changing the metal widths considering different reliability



constraints. The major contribution of this paper includes:

• The IR drop minimization problem has been formulated

as the large-scale optimization problem for a simplified

steady-state model of the power grid network.

• Cooperative coevolution based method is employed for

the minimization of the IR drop of the power grid

network.

• The proposed minimization approach is able to mini-

mize the IR drop without changing the topology of the

grid by only changing the metal widths.

• EM assessment of the power grid network is done

for the optimized power grid with minimized IR drop

which demonstrated optimism in the life time prediction

of the chip.

The rest of the paper is arranged as follows. In Section

II, the related work on power grid optimization is described.

Power grid network model used in the paper is explained

in Section III. Problem formulation and all the reliability

constraints of the power grid network are described in

Section IV. Section V describes the Cooperative Coevolution

based approach and how it is implemented for doing IR drop

minimization. The experimental results on different power

grid benchmark circuits are mentioned in Section VI.

II. RELATED WORK

There are several works on the power grid analysis and

verification, such recent works are [3, 4]. The basic objective

of the works done in power grid optimization so far is to

minimize the area of the metal wires (considering IR drop

as a constraint) of the power grid network by constructing

two-phase optimization problem, then iteratively solve the

two-phase optimization problems using different algorithms.

Tan et al. [5] solved the problem using a sequence of linear

programmings. Wang et al. [6] solved the same problem

with sequential network simplex algorithm. Similarly, there

are more works on the metal area minimization. Zeng et al.

[7] have done power grid wire sizing optimization problem

using locality driven partitioning based two-step optimiza-

tion algorithm. Chang et al. [8] proposed routing friendly

multilayer power grid network by allocating each layer

metal width considering the impact of AP layer. However,

there is hardly any work so far, which tried to minimize

the IR drop by considering different power grid network

constraints. Moreover, recent research developments are

more concentrated on developing new physics-based EM

models for power grids to achieve optimism in mean-time-

to-failure (MTTF) [2, 9]. Minimizing IR drop can be one of

the alternatives to obtain optimism in MTTF. In this paper,

we tried to propose an approach to minimize the total IR

drop of the whole power grid network by changing the metal

widths of each of the metal segments (branches), which are

manually done iteratively by the layout designers in the

industry, to minimize the IR drop. Layout designers also

use decoupling capacitances at few critical nodes to reduce

the IR drop and Ldi/dt voltage noises. But in this paper,

we are only considering IR drop minimization by varying

metal widths. And here Cooperative Coevolution approach

for solving large-scale optimization problem is employed.

III. POWER GRID NETWORK MODEL
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Figure 1. (a) An example of floor-plan and its power grid network(metal
lines) with functional blocks (b) Modeling power lines to resistive network.

An illustration of floor-plan and its power grid network

with functional blocks is shown in Figure 1(a). For min-

imization of IR drop voltage noise, steady-state model of

the power grid network is considered in this paper, which

is shown in Figure 1(b). In this model, only the resistance

of the metal lines is considered. The current drawn by the

underlying circuit is modeled as the current sinks connected

to ground as shown in Figure 1(b). The vias of this model

are considered having zero resistance, as vias have very

low resistance. Inductances associated with the C4 bumps,

to connect Vdd and ground connections are not considered

here. Also, any other parasitic effects due to inductances and

capacitances are not considered here. The steady-state model

of the power grid network can be represented as a linear

system of equations i.e., GV = I, where conductances of

the metal lines make the G matrix, current sinks connected

to ground contributes to form the I vector and node voltages

of all the nodes generate the V vector. By using direct

solvers, such as KLU solver [10], we can determine V i.e.,

voltages of all the nodes. Similarly, from node voltages of

all the nodes, we can even find the branch currents.

IV. PROBLEM FORMULATION

A. Objective Function for IR Drop Minimization

Let’s consider G = {V,E} be a graph corresponding

to a power grid network, where V = {1, 2, · · · , n} is

the set of all the n nodes of the power grid network and

E = {1, 2, · · · , b} is the set of all the b branches of the

graph corresponding to the steady state model of power grid

network.

If I is the current passing through a metal segment (branch

of the graph) of the Power Grid network having resistance

R, then the voltage drop occurred across the metal segment

can be represented by υ :

υ = IR (1)



With sheet resistance ρ Ω/□ which is constant for a metal

layer, having metal segment length and breadth of l and

w respectively, the voltage drop can be denoted by the

following:

υ = I
ρl

w
, (2)

where R = ρl
w

represents the total resistance of the metal

segment of the power line. Similarly, the voltage drop of

the whole Power Grid network with b number of metal wire

segments (or branches) can be written as follows:

υ =

b∑

i=1

|Ii|Ri

=

b∑

i=1

|Ii|
ρli
wi

,

(3)

where W, I, l are set of vectors of metal widths, branch cur-

rents and metal lengths respectively i.e., W = (w1, · · · , wb),
I = (I1, · · · , Ib), l = (l1, · · · , lb). For large value of b,
equation (3) can be treated as the large scale optimization

problem. In equation (3), Ii and wi are the variables for the

ith metal segment which are non-separable in nature. Non-

separable variables are those for which objective function

depends on the interacting variables [11]. li has been taken

as constant for the objective function throughout this work

which will be imported from the circuit netlist. Therefore,

for the whole power grid network, vectors I and W are sets

of non-separable variables. Hence, the objective function can

be formulated as a large-scale optimization problem with b
non-separable variables as follows:

υ(Ii, wi) =
b∑

i=1

|Ii|
ρli
wi

(4)

Hence the IR drop minimization problem with unequal

branch currents Ii is given as follows:

P : minimize
wi∈W Ii∈I

υ, (5)

subject to different reliability constraints which are described

in section IV-B.

Theorem 1: Minimization of total IR drop υ of (4) re-

duces the worst case (maximum) IR drop.
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Figure 2. Single node of the power grid network model

Proof: The worst case maximum IR drop υIR max can be

expressed as

υIR max = Max(VDD − Vx) ∀x ∈ V, (6)

where Vx is the node voltage of the xth node which depends

on the voltage of the neighboring nodes and also depends

on the current of the neighboring edges. Using KCL for a

node Vi (see Figure 2), carrying current Ii from x to i, the

expression of Vx can be written as follows:

Ii =
Vx − Vi

Ri

∀i ∈ Ks

⇒ Vx = Vi + IiRi

⇒ Vx = Vi + Ii
ρli
wi

,

(7)

where Ks is the set of neighboring nodes of x. Therefore, Vx

of (7) depends on the neighboring node voltages, neighbor-

ing branch currents and resistances. Also, υ of (3) depends

on neighboring branch currents and resistances. Therefore,

minimizing υ of (3) under the constraint C1 : |Ii∈E |Ri∈E ≤
ξ ∀i ∈ E by varying current and resistance will reduce the

worst case maximum IR drop υIR max of (6).

B. Reliability Constraints of Power Grid Network

1) IR Drop Constraints: It can be defined by the follow-

ing relation:

C1 : |Ii∈E |Ri∈E ≤ ξ (8)

The above relation should be maintained for all the ith

branches of the power grid network. ξ is the maximum

tolerance level of voltage drop noise allowed between two

consecutive nodes of the power grid network.
2) Metal Area Constraints: The metal area of the power

grid network should be restricted to Amax:

C2 :
b∑

i=1

liwi ≤ Amax (9)

3) Electromigration Constraints: To prevent the current

carrying metal lines from electromigration, the current den-

sity of the metal lines should be less than Im

C3 :
Ii∈E

wi∈E

≤ Im (10)

4) Minimum Width Constraints: The minimum width of

the metal lines wmin is limited by the technology on which

the power grid network lies. Therefore, the constraint can

be expressed as:

C4 : wi∈E ≥ wmin (11)

5) KCL Constraints: KCL should be followed at all the

n nodes of the power grid network.

C5 :
K∑

i=1

Iji + Ix = 0 ∀j ∈ V (12)

where K is the number of neighboring nodes of node j and

Ix is the sink current of the model connected to ground.



V. MINIMIZATION USING COOPERATIVE COEVOLUTION

A. Cooperative Coevolution(CC)

Cooperative Coevolution is a divide and conquer based

approach to solve large scale variable optimization problems.

It decomposes a large scale problem into several simple

sub-problems. So the basic phenomenon of CC is that it

decomposes an n-dimensional decision vector into n sub-

components and then optimizes each of the subcomponents

using standard evolutionary optimization algorithm in a

round robin fashion. The basic principle of the evolutionary

optimization algorithm is to mimic the biological evolu-

tion process in generating good candidate solutions for a

given objective function. Generally, candidate solutions of

an optimization problem play the role of individuals in a

population, and these individuals go under reproduction,

mutation and recombination and selection to find the op-

timum solutions for a given objective function. Cooperative

coevolution algorithm is stated in Algorithm 1.

Algorithm 1: Cooperative Coevolution Algorithm

Input: f, xmin, xmax, n

Output: Optimized value of f and corresponding variables
x1, x2, · · · , xn values

/*grouping based variable decomposition*/;
groups ← grouping(f, xmin, xmax, n);
/*Optimization stage using evolutionary algorithm*/;
population ← rand(population_size,n);;
for j ← 1 to size(groups) do

group_num ← groups[j];
subpop ← population[:,group_num];
subpop ← optimizer(best,subpop,FE);
population[:,group_num] ← subpop;
(best,best_val)←min(population);

Theorem 2: CC based algorithm converges to global min-

imum for large-scale optimization problems if the main

optimizer converges to the global minimum.

Proof: Let f(x1, x2, · · · , xn) be an objective function

with n decision variables. Now if n variables have been de-

composed by random grouping with each group containing s
decision variables, then t = n/s number of subcomponents

will be there. In other words, t instances of the objective

function with each containing s number of decision variables

and (n− s) number of constants will be there. Now each of

the t objective functions will be minimized independently

using a standard optimization algorithm which will provide

us with t local minimum values from t subcomponents. And

then random grouping based strategy is applied to co-adapt

these t minimum values. Hence, the global minimum will be

obtained for the objective function f if the main optimization

algorithm converges to the global minimum of each of the

t instances of the objective function f .

CC is introduced into Genetic Algorithm for optimization

of function by Potter et al. [12]. Liu et al. [13] used CC

in large-scale optimization problem by using Fast Evolu-

tionary Programming with Cooperative Coevolution. CC is

introduced into PSO by Bergh et al. [14]. CC has also been

adapted into Differential Evolution(DE) in [15], [11]. An im-

proved version of DE is Self-Adaptive Differential Evolution

with Neighborhood Search(SaNSDE)[16] which self-adapts

its scaling factor F, crossover rate CR, and mutation strategy.

It is proved that SaNSDE performs quite well compared to

the other similar DE algorithms[16]. Yang et al. [11] showed

that SaNSDE under CC framework (CC-SaNSDE) for large-

scale variable optimization works very well. To deal with

the non-separable nature of the problem, random grouping

based decomposition strategy of the decision variables is

used. Generally, in large-scale problems, only a proportion

of variables interact with each other, therefore, the random

grouping of variables increase the probability of grouping

two interacting variables in the same subcomponent [17].

So CC-SaNSDE has been adapted in this paper to solve

total IR drop minimization of power grid network.

B. IR drop minimization using CC-SaNSDE

Algorithm 2: IR drop minimization using CC-SaNSDE

Input: Both branch width & current ranges (for problem P)
are given as input from a power grid circuit netlist
with b branches and n nodes. Branch lengths from
the netlist are also taken as input.

Output: Optimum power grid netlist having minimized IR
drop along-with the corresponding optimum resis-
tance budget and metal width budget for the b
branches.

1 Search space S is constructed in such a way to incorporate
the reliability constraints C1, C2, C3, C4, and C5 mentioned
in section IV-B.;

2 while inside search space S do
3 Initialize the initial parameters for CC-SaNSDE with

random grouping.;
4 Random grouping is employed to decompose the b

variables in t subcomponents.;
5 SaNSDE optimization algorithm is used to optimize

each of the subcomponents.;
6 Random grouping strategy is also used for the

co-adaptation of all the subcomponents.;

7 Optimum metal widths corresponding to minimized IR drop
is found and model parameters are updated.;

8 KLU solver is used to find the optimum IR drop.;

The IR drop minimization algorithm using CC-SaNSDE

is given in Algorithm 2. For the problem P , number of

variables are decomposed to form subcomponents and then

each of the subcomponents is minimized using SaNSDE.

The subcomponents are formed based on random grouping

of variables and each of the subcomponents are minimized

using SaNSDE. And finally, random grouping based strat-

egy is used for co-adaptation of the subcomponents. Also,

SaNSDE has been modified to incorporate the reliability

constraints as mentioned in section IV-B, to keep the search

space within the region of validation. Branch widths are

calculated corresponding to the resistances of the branches

and ranges of branch width is given as input for the problem



P . Apart from the branch width ranges, power grid analysis

is done using KLU solver[10] to find the branch current

ranges of the power grid network and given as input.

C. EM Assessment

EM assessment is done to predict the lifetime of a chip.

EM occurs with two phases naming, nucleation phase, and

the growth phase. In the nucleation phase, the voids started

to form over a long period of time until the voids are

nucleated. In the growth phase, hillocks are started to form

and the interconnect metal resistance changes to a point

where the resistance exceeds a threshold and failure occurs.

The failure rates of the interconnect metal lines can be taken

as a measure to check for EM-induced reliability. In extreme

case, MTTF of the weakest metal segment can be treated as

the life-time of the whole chip. Here, EM assessment of the

power grid is done by considering Black’s equation [18].

MTTF from Black’s equation statistics can be written as

follows:

MTTF = AJ−Nexp{Ea/kT}, (13)

where A is constant which depends on the material proper-

ties of the metal. Here, k is the Boltzmann’s constant and

T is the temperature. Value of N is found to be 2, which

depends on residual stress and current density J . Ea is the

activation energy which also depends on current density J .

The Black’s equation of MTTF has been controversial and

a better physics-based EM model is proposed in [2]. This

proposed method [2] of predicting MTTF has also been

used here to do the full chip life-time assessment of the

power grid networks. In view of this, EM also causes the

IR drop to increase as the resistance of the interconnect

metal increases chronologically over a long period in the

growth phase of EM. Therefore, minimizing the IR drop of

the power grid network will surely demonstrate an optimism

in the predicted MTTF.

VI. EXPERIMENTAL RESULTS

Table I
POWER GRID BENCHMARK CIRCUITS DATA [19]

PG circuits #Nodes(n) #Branches(b) Branch resis-
tance ranges
(in Ω)

ibmpg2 127238 208325 (0,1.17]
ibmpg3 851584 1401572 (0,9.36]
ibmpg4 953583 1560645 (0,2.34]
ibmpg5 1079310 1076848 (0,1.51]
ibmpg6 1670494 1649002 (0,17.16]
ibmpgnew1 1461036 2352355 (0,21.6]
ibmpgnew2 1461039 1422830 (0,21.6]

The CC-SaNSDE algorithm with random grouping is im-

plemented in MATLAB and the experiments are performed

on a machine with Intel Xeon E5-2650 processor having 32
GB memory and validated by IBM power grid benchmark

Table II
COMPARISION OF IR DROP FOR DIFFERENT POWER GRID CIRCUITS

BEFORE AND AFTER MINIMIZATION

PG circuits IR drop (in volts)

Before minimization After minimization

Max. Avg. Min Max. Avg. Min.

ibmpg2 0.0631 0.0315 0.0129 0.0567 0.0283 0.0116

ibmpg3 0.0310 0.0252 0.0049 0.0279 0.0226 0.0044

ibmpg4 0.0386 0.0220 0.0060 0.0347 0.0198 0.0055

ibmpg5 0.0690 0.0373 0.0146 0.0621 0.0335 0.0134

ibmpg6 0.0598 0.0297 0.0111 0.0538 0.0267 0.0998

ibmpgnew1 0.0353 0.0204 0.0055 0.0317 0.0183 0.0051

ibmpgnew2 0.0516 0.0271 0.0102 0.0464 0.0243 0.0091

★
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Figure 3. Resistance budget for ibmpg2 circuit (a) before minimization,
(b) after minimization.

✼
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Figure 4. Metal width budget for ibmpg2 circuit (a) before minimization,
(b) after minimization.

Table III
COMPARISION OF MTTF FOR DIFFERENT POWER GRID CIRCUITS

USING BALCK’S EQUATION AND USING PROPOSED METHOD OF [2]
BEFORE AND AFTER MINIMIZATION OF IR DROP.

PG circuits Mean time-to-failure (yrs)

Before minimization After minimization

Black’s [2] Black’s [2]

ibmpg2 7.81 15.65 11.21 19.35

ibmpg3 15.75 27.60 19.80 30.67

ibmpg4 12.55 29.25 16.33 32.42

ibmpg5 6.31 23.06 10.52 26.72

ibmpg6 9.49 17.75 13.34 21.10

ibmpgnew1 13.62 22.45 17.50 25.48

ibmpgnew2 12.41 20.10 16.22 23.37



circuits [19]. IBM power grid benchmark data for 7 circuits

are listed in the Table I. Experiments are performed for

these 7 circuits i.e., ibmpg2 to ibmpgnew2. Current sink

values of these circuits are modified so that the initial IR

drop is below a threshold voltage level. Although metal

width and length information are not available in the IBM

power grid circuits, appropriate values of lengths are used

and the corresponding width of metal layers are determined

by considering sheet resistance of the metal ρ = 0.02 Ω/□
(assuming copper interconnect materials) and from branch

resistances using equation (2). Algorithm 2 is tested using

these power grid benchmarks and the obtained minimized IR

drop data is listed in Table II. For the problem P power grid

analysis is done using KLU solver [10] and all the branch

currents are determined, from there branch current ranges

have been found to be in the range of 0.1mA to 10mA
for all the benchmark circuits. Subsequently, Algorithm 2

is used to get an optimum budget of metal widths and

resistances corresponding to the minimum total IR drop

of the power grid network. Figure 3 and Figure 4 show

the resistance budget and metal width budget before and

after minimization respectively for ibmpg2 circuit. Fitness

Evaluation(FE) used for the experiments is 106 as for this

value of FE the convergence of the Algorithm 2 is found to

be the best.

For the EM assessment, we assume that the power grid

will fail when the worst case IR drop exceeds 10%VDD. In

Black’s equation based series model, the circuit is assumed

to be failed as soon as any branch fails. Parameters used for

calculation of MTTF of different power grid circuits in this

paper are same as stated in [2]. Comparison of MTTF values

for different power grid benchmarks before and after IR drop

minimization for the Black’s series model and the physics-

based EM-model of [2] are listed in Table III. It is observed

from the Table III that the MTTF after minimization of

IR drop has increased significantly. That is because MTTF

is inversely proportional to the current density raised to

the power N (JN ). Since we have minimized IR drop by

increasing the metal widths which decreases the J . As a

result, we have got an optimistic prediction of the life-time

of the power grid network with an increased value of MTTF.

VII. CONCLUSION

This paper presents a method to minimize the IR drop for

power grid networks. The IR drop minimization problem

for a power grid network is formulated as a large-scale

optimization problem and the minimization of the IR drop

is done using CC-SaNSDE. IR drop is minimized at the cost

of the metal area of the chip. Results show minimization of

IR drop for different power grid benchmarks. Further, EM

assessment of the optimized power grid network is done to

demonstrate the optimism in the life-time prediction of the

power grid network.
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using lévy flight for VLSI power grid analysis,” in VLSI Design and

2017 16th International Conference on Embedded Systems (VLSID),

2017 30th International Conference on. IEEE, 2017, pp. 107–112.

[4] M. Fawaz and F. N. Najm, “Parallel simulation-based verification of
RC power grids,” in VLSI (ISVLSI), 2017 IEEE Computer Society

Annual Symposium on. IEEE, 2017, pp. 445–452.

[5] S. X.-D. Tan, C.-J. R. Shi, and J.-C. Lee, “Reliability-constrained
area optimization of VLSI power/ground networks via sequence of
linear programmings,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 22, no. 12, pp. 1678–1684,
2003.

[6] T.-Y. Wang and C.-P. Chen, “Optimization of the power/ground
network wire-sizing and spacing based on sequential network simplex
algorithm,” in Quality Electronic Design, 2002. Proceedings. Interna-

tional Symposium on. IEEE, 2002, pp. 157–162.

[7] Z. Zeng and P. Li, “Locality-driven parallel power grid optimization,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 28, no. 8, pp. 1190–1200, 2009.

[8] W.-H. Chang, M. C.-T. Chao, and S.-H. Chen, “Practical routability-
driven design flow for multilayer power networks using aluminum-
pad layer,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 22, no. 5, pp. 1069–1081, 2014.

[9] S. Chatterjee, V. Sukharev, and F. N. Najm, “Power grid electromi-
gration checking using physics-based models,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2017.

[10] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a di-
rect sparse solver for circuit simulation problems,” ACM Transactions

on Mathematical Software (TOMS), vol. 37, no. 3, p. 36, 2010.

[11] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[12] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary
approach to function optimization,” in International Conference on

Parallel Problem Solving from Nature. Springer, 1994, pp. 249–257.

[13] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Evolutionary Compu-

tation, 2001. Proceedings of the 2001 Congress on, vol. 2. IEEE,
2001, pp. 1101–1108.

[14] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE transactions on evolutionary

computation, vol. 8, no. 3, pp. 225–239, 2004.

[15] Y.-j. Shi, H.-f. Teng, and Z.-q. Li, “Cooperative co-evolutionary
differential evolution for function optimization,” Advances in natural

computation, pp. 428–428, 2005.

[16] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE

Congress on. IEEE, 2008, pp. 1110–1116.

[17] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-
evolution for large scale optimization through more frequent random
grouping,” in Evolutionary Computation (CEC), 2010 IEEE Congress

on. IEEE, 2010, pp. 1–8.

[18] J. R. Black, “Electromigrationa brief survey and some recent results,”
IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338–347,
1969.

[19] S. R. Nassif, “Power grid analysis benchmarks,” in Design Automation

Conference, 2008. ASPDAC 2008. Asia and South Pacific. IEEE,
2008, pp. 376–381.


