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Abstract—With the improvement of VLSI technology, on-chip
power grid design is becoming more challenging than before.
In this design phase of VLSI CAD, power grids are generated
in order to make power and ground connections to transistors
or logic blocks. However, due to the scaling of supply voltage
and increase in the number of transistors per unit area of the
chip, power grid design has become a considerable challenge.
The two major issues encountered during power transfer via
power grid are IR drop and Electromigration (EM). For a large
chip, designers have to perform many iterations of a design in
order to minimize IR drop and EM violations, which increases
design cycle time. Recently, machine learning (ML) techniques
have attracted the VLSI CAD community and are found to be
very effective in solving VLSI CAD problems. However, very few
works attempted to solve on-chip power grid design problem
using machine learning. Therefore, this paper reviews some of
the on-chip power grid design solutions using AI/ML approaches.

Index Terms—IR Drop, Electromigration, Machine Learning,
On-Chip Power Grid, VLSI CAD.

I. INTRODUCTION

The design of high-performance chips in the semiconduc-
tor industry involves a vast human work-force, which also
requires a substantial amount of time for realizing the design
specifications. Following the market trends, the semiconductor
industry advances with new efficient technology nodes in every
alternate year. Therefore, it is imperative to reduce the design
cycle time so that the chip design for the present technology
node can be manufactured well before the subsequent tech-
nology node evolves into the market. Otherwise, the design
may become obsolete once the new technology node appears
in the market. Therefore, to reduce human efforts in the design
cycle and to cope with the pace needed for chip designs,
automating/semi-automating the design process is required.
Artificial Intelligence (AI) and Machine Learning (ML) can
play a massive role in the automation process of the chip
design cycle. In this paper, we study different roles of AI
and ML in some of the crucial aspects of the chip design.
To be specific, we have discussed how different learning
techniques can be implemented to improve chip design tasks,
especially how AI and ML can be adapted to improve the
design of on-chip power grid interconnects. On-Chip power
grid interconnects are the metallic interconnects within a chip
that is used to deliver power supply voltage from the power
supply pads to the underlying transistors. The major challenges
faced during power transfer are the following two:

IR drop: It denotes voltage drop that occurs across metallic
interconnects when current is passed through it. If the IR drop

exceeds a certain threshold, the underlying transistors do not
get the adequate voltage that is intended by it.

Electromigration: It is the movement of metal atoms due
to the exchange of momentum from the electrons to the
metal atoms. A higher current density causes it. Due to the
electromigration voids and hillocks are formed in the metal
lines, which can short circuit or open circuit some of the metal
interconnects causing malfunctioning of the chip.

Motivations: If these above two challenges are not handled
during the design time, the chip may malfunction, or the
chip’s longevity is reduced. This phenomenon decreases the
reliability of the chip. The primary design challenge in the
design of the power grid interconnects is that it takes a
huge amount of circuit analysis time for a large-scale power
grid network. Further, iteratively it needs to perform circuit
analysis in order to optimally find the widths of the power
grid interconnects. This increases the design cycle time. Also,
it consumes a significant working hour. Existing methods of
designing power grid are time-consuming as it checks for IR
drop and EM violations over many iterations of the design
cycle. Moreover, recent Intelligent Design of Electronic Assets
(IDEA) program sponsored by DARPA in 2018 [1], focuses on
creating a “no human in the loop”, 24-hour turnaround layout
generator for System-On-Chips. Therefore, in this paper, we
have demonstrated various AI and ML techniques to improve
the power grid interconnects’ design cycle. The contributions1

of the paper are mainly divided in four parts described each
in subsequent sections. Before describing the contributions, it
is necessary to know the preliminaries of AI/ML approaches.

II. PRELIMINARIES

A. On-Chip Power Grid Design and Related Works

VLSI Physical Design is an integral part of VLSI CAD,
where the layouts are generated from its circuit specifications.
Initially, estimated designs of power grid lines are created in
the floorplan stage, even before the placement of logic blocks.
Subsequently, power grid modeling is done in order to analyze
the power grid designs. During the modeling stage, power
grid lines are converted into equivalent electrical models. In
this paper, we have used only resistive models of power grid.
The logic blocks are modeled as current sources connected
to ground. Once the modeling is done, circuit analysis is
performed to observe the voltage and currents in the power
grid, which is known as power grid analysis. Using the voltage

1This paper is based on author S. Dey’s dissertation, a more detailed text
can be found in [2].



Fig. 1. On-Chip Power Grid Design Flow

and current obtained from the power grid analysis stage, IR
drop and Electromigration (EM) violations are checked. If it is
within acceptable margin power planning stage is completed,
or else power grid designs need to be fixed. Achieving a
reasonable margin of IR drop and EM violations for a large
power grid is a challenge, which requires many iterations of
the design cycle. In order to make the power planning cycle
faster, in this paper, we propose some solutions using AI/ML
approaches. Also, there are many efforts in the VLSI CAD
community to adapt Machine Learning techniques [3], [4].
However, only a few works attempted the on-chip power grid
design problem using the machine learning technique. There-
fore, discussion of this paper is more about our contributions
in power grid design using AI/ML approaches.

A toy model of power grid network and equivalent resistive
circuit model are shown in Fig. 2. It is to be noted that by
“power grid”, we mean power and ground grid as a whole.
However, in general, power and ground grids are both separate
network; connected to VDD and VSS (or ground) sources,
respectively.
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Fig. 2. (a) A representational view of on-chip power grid network connected
with the functional blocks. These functional blocks are consist of transistors-
based circuits. (b) Resistive network model of PGN. circuit

B. AI/ML Techniques

Artificial Intelligence (AI) and Machine Learning (ML)
have gained significant attention in the last decade due to
the substantial breakthrough in the deep learning models in

predicting complex tasks. Another primary reason behind the
success of the deep learning model is the advent of the
many-core architectures (GPU), which helped the training of
models in feasible time in order to predict complex tasks.
However, when we talk about AI/ML, it not only means
the deep learning. AI means any system that possesses in-
telligent decision-making capability. Further, those decision-
making systems, where learning happens from its previous
or historical data/experience, are known as machine learning
systems. Generally, the class of AI can be broadly divided into
three categories based on their type of learning. These are:

• Probabilistic Learning
• Metaheuristic Learning
• Machine Learning

1) Probabilistic Learning: In probabilistic learning, the
entities perform the tasks depending on the estimated prob-
abilities of the events. The objective is to create stochastic
models that describe a series of feasible occasions. In order
to do so, transition probabilities for different sets of possible
events are evaluated. There are several probability models in
the literature, such as Markov chain models, Queuing models,
Petri nets. In Section III, we use stochastic approach to analyze
the power grid analysis problem. The power grid network is
modeled as a graph and mapped as a Markov chain model. For
faster traversal of the power grid network, we use Lévy flight.
Our proposed approach helps in obtaining faster convergence
in power grid analysis.

2) Metaheuristic Learning: In metaheuristic learning, the
objective is to create mathematical cost functions. Subse-
quently, obtain the cost function’s optimized value and its cor-
responding decision variables by employing heuristic search
techniques. For generating the search space, many random
points are generated. The cost function is evaluated in all
those points of the search space. Subsequently, various search
techniques are employed for efficient search. These search
strategies are problem-specific. For different kinds of prob-
lems, different search strategies become suitable. There is not a
single generalized search technique that can give the best result
for all problems. Moreover, these search strategies can find a
near-optimum solution for any complex multimodal problems.
In Section IV, we have employed metaheuristic learning in
order to obtain the optimum design space exploration of the
power grid design. For that, we use cooperative coevolution,
and nondominated sorting genetic algorithm (NSGA-II) ap-
proaches.

3) Machine Learning: Machine Learning mostly includes
learning from data. Here the underlying philosophy is to create
an inference model from the dataset. Subsequently, one is
required to predict samples for a new set of specifications.
Machine Learning is majorly divided into two major classes:

• Supervised Learning.
• Unsupervised Learning.

In supervised learning, all the training samples of the dataset
are labeled. In unsupervised learning, the dataset is unlabelled.
There are different traditional machine learning models, such
as SVM, Random Forest, Gaussian Process, Artificial Neural
Network. These models generally don’t perform well for
complex prediction tasks. Subsequently, researchers in 2010s
have developed and achieved massive success with the deep



neural network (DNN) having multiple hidden layers. DNN
can perform prediction tasks on imagenet dataset with near-
human level accuracy, which gives rise to the field of deep
learning. Both supervised and unsupervised, several emerging
deep learning models are coming up as the time progresses.
The work of this paper is limited only to the supervised
learning models. In supervised learning, a model is created
depending on these labeled samples in order to predict the
labels of new test samples. Another essential part of the
machine learning model is the feature set. We have generated
a dataset with proper feature selection using IBM power grid
benchmarks for our work in this paper [5]. We employ this
dataset in order to create deep neural network-based machine
learning models, which are described in Section V and Section
VI.

Proposed approaches of the paper are mentioned in next
four subsequent sections. At first, Section III describes a fast
probabilistic approach of on-chip power grid analysis. Section
IV describes a metaheuristic approach using NSGA-II to ob-
tain an optimum trade-off between IR drop and metal routing
area for on-chip power grid design. Subsequently, in Section
V, the first proposal of ML approach is demonstrated for on-
chip power grid design. Finally, in Section VI, again, the first
proposal of ML is presented to predict EM-aware lifetime
of on-chip grid network. For experimental purposes, IBM
power grid benchmarks [5] are employed. The experiments
are performed using C/C++ and Python languages along with
machine learning libraries scikit-learn and Tensorflow.

III. POWER GRID ANALYSIS USING PROBABILISTIC

APPROACH:

Generally, power grid network is modeled as the RLC
circuit to detect the hotspots. We have considered only the
resistive model as we are only interested in a steady-state anal-
ysis. Hotspots are the affected areas of the power grid network
where the voltages level goes below a specific threshold value.
Hotspots are generated due to the voltage drop across the
metal lines known as IR drop. Hotspots are identified as those
nodes whose voltage values drop below a specific threshold
value. Therefore basic circuit analysis methods are used in the
literature to detect the hotspots. However, with the increase in
the size of the circuit, the traditional methods of the literature
are not able to perform circuit analysis in an effective way,
resulting in huge time and memory resource consumption.
Therefore, researchers have used heuristic-based methods such
as Random walk [6] to perform circuit analysis, which has
become very famous among the research community. To make
circuit analysis more faster and effective, we use a method
based on Lévy Random Walk [7] here to detect the hotspots
created by the voltage drop. Circuit analysis consists of steady-
state analysis and transient analysis. In this paper, we have
only considered steady-state analysis. In the steady-state anal-
ysis, only the resistive elements of the circuits are considered.
From the resistive electric networks, linear system of equations
are formed GV = I where G, V , and I are the conductance
matrices, voltage vectors, and current vectors respectively,
which is then solved using traditional solvers such as Gaussian
Elimination, Gauss-Jordan etc. Random walk-based heuristic
method is also used to solve the linear equations system in

TABLE I
SPEEDUP ANALYSIS OF USING LÉVY FLIGHT APPROACH ON CPU

Nodes tRW (s) tGS (s) tHLS (s) tlevy (s) Speedup Speedup Speedup
(

tRW /tlevy
) (

tGS/tlevy
) (

tHLS/tlevy
)

pgckt 10K 0.06 0.07 0.22 0.04 1.50× 1.75× 5.50×
pgckt 40K 0.30 0.36 0.82 0.17 1.76× 2.11× 4.82×
pgckt 90K 0.65 1.62 1.84 0.30 2.16× 5.40× 6.13×

pgckt 250K 1.92 6.78 6.06 0.86 2.23× 7.88× 7.04×
pgckt 640K 7.98 19.31 20.00 2.19 3.64× 8.81× 9.13×
pgckt 1M 18.95 27.85 39.55 3.51 5.39× 7.93× 11.26×
pgckt 4M 297.21 117.76 154.78 14.61 20.34× 8.06× 10.59×
pgckt 9M 1513.4 272.74 349.66 33.88 44.66× 8.05× 10.32×

pgckt 16M 3326.44 486.03 651.15 61.49 54.09× 7.90× 10.58×
pgckt 25M 6263.80 760.10 1034.36 112.85 55.50× 6.73× 9.16×
pgckt 36M 9800.35 1094.01 1562.71 167.63 58.46× 6.52× 9.32×
pgckt 49M 14065.90 1498.20 2430.38 232.91 60.39× 6.43× 10.43×

an analogous way, which has shown better performance in
circuit analysis with respect to time than the traditional solvers
within the acceptable limit of error. However, one demerit is
that Random Walk depends on the random probability values
to converge (or to find the Vdd homes). Therefore, it keeps
traversing into some closed loop of nodes without finding the
destination home, which unnecessarily increases the power
grid network’s solving time. To make the circuit analysis more
faster, Levy Random Walk method is employed which uses
jumping strategy from one node to the other to make the
traversal of the whole power grid network faster and reduces
time significantly. Our proposed solution also removes the
problem of trapping in a loop of nodes. To compensate for any
error due to the introduction of Levy Random walk, effective
resistance between two points of the power grid is calculated
using the formula given in [8] and embedded in the equations
of random walk. Finally, the performance of the proposed
scheme is validated on standard power grid benchmarks, which
show significant speedup. Our experimental results on large-
scale power grid benchmarks show speedup over state-of-art
solutions as shown in Table I, with a maximum error of (≤4%).
More details of the work of this section can be found in [9].

IV. DESIGN SPACE EXPLORATION OF POWER GRID USING

HEURISTIC APPROACH:

This section deals with design space exploration (DSE) of
on-chip power grid for obtaining optimum design point. The
design space exploration of different critical power grid design
objectives is achieved by using metaheuristic. The primary
objective is to reduce IR drop hotspot. In our preliminary work
[10], we have observed that we can achieve IR drop minimiza-
tion by increasing the metal routing area. Subsequently, we
also observe that if metal routing area minimization increases
IR drop [11]. Therefore, we form a multiobjective optimization
problem with IR drop and metal routing area as two primary
objectives. We solve this using nondominated sorting genetic
algorithm II (NSGA-II) metaheuristic. The proposed approach
is described in Fig. 3. The power grid network is divided into
many subcircuits, and optimization is done in each subcircuits
to find Pareto optimal solutions for each subcircuits. When
the optimization is done for all subcircuits, we consider that
the optimum design point is obtained. From the IR drop
map shown in Fig. 4, we can recognize the red hotspots
have been reduced using the proposed DSE framework. With
our proposed DSE framework, we can observe that we have
achieved a tradeoff between IR drop and metal routing area as
shown in Table II. More details about this work can be found
in [12] [10] [11].



TABLE II
COMPARATIVE STUDY OF PROPOSED DSE FRAMEWORK WITH WORK OF SINGLE-OBJECTIVE FORMULATION

PG circuits Before optimization single-objective formulation Proposed DSE
VIR worst initial (V) VIR worst (V) ∆VIR worst ∆A VIR worst (V) ∆VIR worst ∆A

ibmpg2 0.0369 0.0263 -28.72% +17.87% 0.0342 -7.31% -8.51%
ibmpg3 0.2438 0.1879 -22.92% +14.33% 0.2230 -8.53% -8.20%
ibmpg4 0.0086 0.0041 -52.32% +22.65% 0.0075 -12.79% -7.92%
ibmpg5 0.0690 0.0431 -37.53% +18.27% 0.0610 -11.59% -7.59%
ibmpg6 0.2063 0.1529 -25.88% +15.82% 0.1881 -8.82% -7.32%
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Fig. 3. Proposed Design Space Exploration Framework Flow
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Fig. 4. IR drop profile of ibmpg2 circuit (a) before optimization, (b) after
optimization

V. POWER GRID DESIGN USING MACHINE LEARNING:

This proposal describes how the machine learning approach
can be incorporated for designing a reliable on-chip power
grid. We propose the first-ever machine learning model for on-
chip power grid design. The flow of the proposed approach is
shown in Fig. 5. We generated datasets using IBM power grid
benchmarks [5]. The feature selection is made by evaluating
the r2 score of various sets of input and output features. Fi-
nally, for our machine learning model, we consider Id current
source at (x,y) point and its coordinates (x,y) as input feature
for a metal line and width of metal lines as output feature.

IBM PG Netlist Training
Dataset

Test Dataset

Training Using
Neural Network

Trained Model

Predicted IR
drop

Perturbed PG
Netlist

Predict width of the
PG interconnect

Do processing for
IR drop prediction

Feature extraction 
(X coordinate, Y coordinate, Switching current)

Perturbation

Calculate MSE
and r2 score

Fig. 5. ML-based Power Grid Design Flow

Considering these feature sets, we constructed datasets. We
employ a neural network-based supervised machine learning
technique to predict the optimum widths of the metal lines of
the power grid network. The neural network is trained using
the generated dataset, and a perturbed version of dataset is
used as testset for testing the ML approach. Once the optimum
widths are obtained with the help of ML approach, we obtain
the IR drop map using Kirchoff’s rule. We achieve a similar
IR drop map with ML approach as compared to IR drop map
obtained from the conventional approach as shown in Fig. 6.
The worst-case IR drop for all other ibmpg benchmarks are
listed in Table IV, which shows that ML approach produces
very close results to the conventional approach. We have also
achieved a maximum speedup of ∼5-6× over the conventional
approach as shown in Table III. More details about this work
can be found in [13].

TABLE III
COMPARATIVE STUDY OF CONVERGENCE TIME FOR CONVENTIONAL

POWER PLANNING APPROACH AND PROPOSED ML FRAMEWORK

Time (sec) Speedup

PG circuits Conventional PowerPlanningDL
TimeConventional

TimePowerPlanningDL

ibmpg1 6.85 3.56 1.92×
ibmpg2 23.46 11.88 1.97×
ibmpg3 29.50 8.07 3.59×
ibmpg4 52.4 11.83 4.42×
ibmpg5 74.80 12.74 5.87×
ibmpg6 97.5 17.41 5.60×
ibmpgnew1 102.58 21.50 4.77×
ibmpgnew2 48.60 10.86 4.47×



TABLE IV
COMPARATIVE STUDY OF WORST-CASE IR DROP USING CONVENTIONAL

POWER PLANNING APPROACH AND PROPOSED ML FRAMEWORK

Worst-case IR drop (mV )
PG circuits Conventional PowerPlanningDL
ibmpg1 69.8 68.2
ibmpg2 36.3 36.1
ibmpg3 18.1 18.0
ibmpg4 4.0 4.1
ibmpg5 4.3 4.2
ibmpg6 13.1 13.0
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Fig. 6. IR drop map of ibmpg2 circuit (a) Conventional method (b) Proposed
ML method

VI. AGING PREDICTION OF POWER GRID DESIGN USING

MACHINE LEARNING:

In this section, our proposed work depicts a machine
learning approach for computing lifetime of the power grid
network in its design phase. With the improvement in VLSI
technology, Electromigration(EM) sign-off has grown to be
a big challenge, necessitating a substantial amount of time
for an incremental change in the power grid (PG) network
design in a chip. In this work, for the first time, we present
a machine learning approach to obtain the EM-aware aging
prediction of on-chip PG network. We employ neural network-
based regression as our core machine learning technique to
immediately predict a perturbed PG network’s lifetime. Here,
also we propose a supervised learning model as shown in
Fig. 7. Similar to Section V, the feature selection is made by
evaluating r2score, and dataset is created using IBM power
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Fig. 7. ML-based Electromigration-aware aging prediction flow

grid benchmarks. For the test dataset, we have made some
perturbations in the dataset in order to bring new samples to
the test dataset. We also introduce a new failure criterion that
produces a better MTTF value. Possible EM-affected metal
segments of the PG network are detected by using a logistic-
regression-based classification machine learning technique. We
achieve notable speedup over the state-of-the-art results as
shown in Table VI. Our predicted MTTF values are also close
to the accurate method of [14] as shown in Table V. More
details about this work can be found in [15].

TABLE V
COMPARATIVE STUDY OF MTTF FOR OUR PROPOSED ML-BASED

APPROACH WITH WORKS OF [14], [16]–[18] FOR IBM POWER GRID

BENCHMARKS.

MTTF (µ) (years)

Methods
TCAD2016 [14]

(µH )
ICCAD2017 [16]

(µCh)
TCAD2018 [17]

(µC )
IRPS2019 [18]

(µN )
Proposed

(µML)
PG Circuits

PG1 14.01 6.10 8.51 6.5 13.25
ibmpg1 12.55 6.50 10.91 7.0 12.10
ibmpg2 18.75 6.78 10.11 12.1 12.55
ibmpg3 31.96 6.66 9.95 6.7 12.25
ibmpg4 33.39 9.83 11.95 16.7 17.48
ibmpg5 25.16 6.54 6.63 6.3 10.33
ibmpg6 19.87 9.53 11.96 11.2 12.41

ibmpgnew1 25.96 13.24 11.64 13.2 14.56
ibmpgnew2 21.80 5.72 6.72 7.3 13.24

PG2 17.85 8.32 9.32 10.3 11.21
PG3 - - - 7.2 10.51
PG4 - - - 6.8 8.47

Overall in this paper work, it is demonstrated that AI/ML
approaches can be a good alternative for the traditional power
grid design approaches, which is fast and can speedup the
overall design cycle for future intricate SoC design.

VII. SCOPE FOR IMPROVEMENT

The work proposed in Section III is applicable to regular
large power grids. In order to adapt the proposed approach
of Section III for practical cases of power grid circuits, it is
necessary to have an analytical equivalent resistance model for
practical non-uniform power grids.

The methods presented in Section IV and Section V are
designed with the assumption that it is a two-layer power grid.
However, the work can be extended for a multi-layer power
grid with proper formulation and calibration.

As mentioned before, the machine learning approaches
are found to produce good results for incremental designs.
Therefore, further work is required in order to design fully
automated machine learning solutions for on-chip power grid
design.

VIII. CONCLUSION AND FUTURE WORKS

The work of this paper is motivated towards improving the
on-chip power grid design methodology with Artificial Intel-
ligence and Machine Learning techniques as viable options.
Towards this, we work on major two design challenges of the
on-chip power grid design phase. These two challenges are IR
drop and Electromigration issues. Both of these issues increase
failure probability of the power grid network as well as the
chip. Existing works mostly solve the IR drop analysis with
linear algebraic methods which is a time-consuming process
for the large power grid networks. Also, it is necessary to
optimize the power grid design considering various critical
design objectives. Existing works of literature do not address
these multiobjective optimization issues, instead, the work of



TABLE VI
COMPARATIVE STUDY OF CPU RUNTIME FOR OUR PROPOSED ML-BASED APPROACH WITH WORKS OF [14], [16]–[18] FOR IBM POWER GRID

BENCHMARKS.

CPU Runtime (t) (Hours) Speedup

Methods
TCAD2016 [14]

(tH )
ICCAD2017 [16]

(tCh)
TCAD2018 [17]

(tC )
IRPS2019 [18]

(tN )
Proposed

(tML)
tH
tML

tCh

tML

tC
tML

tN
tML

PG Circuits
PG1 0.02 0.02 0.001 0.000166 0.0001 200× 200× 10× 1.66×

ibmpg1 0.05 0.03 0.003 0.01000 0.0003 166.66× 100× 10× 33.33×
ibmpg2 0.11 0.31 0.04 0.02000 0.002 55× 155× 20× 10×
ibmpg3 5.83 4.27 0.41 0.07000 0.009 647.77× 610× 45.55× 7.77×
ibmpg4 14.71 6.81 2.31 0.11000 0.007 2101.42× 972.85× 330× 15.71×
ibmpg5 0.69 0.25 0.06 0.03000 0.006 115× 41.66× 10× 5×
ibmpg6 1.75 2.07 0.79 0.23330 0.009 194.44× 230× 87.77× 25.92×

ibmpgnew1 16.78 0.42 1.24 0.08000 0.013 1290.76× 32.06× 95.38× 6.15×
ibmpgnew2 15.32 2.60 0.43 0.06000 0.008 1915× 325× 53.75× 7.50×

PG2 10.94 1.12 1.06 0.10166 0.010 1094× 112× 106× 10.06×
PG3 - - - 0.13666 0.04200 - - - 3.25×
PG4 - - - 0.25666 0.10100 - - - 2.54×

Avg. Speedup 778× 277.85× 76.84× 10.74×

literature only considers area minimization as the power grid
optimization solution. The use of simple linear programming
techniques for optimizing the power grid is also not a good
option for large power grid networks. Further, it is necessary
to obtain the electromigration-aware aging prediction of the
power grid networks, during the design phase itself. Existing
physics-based approaches take a large amount of time for
design sign-off. Therefore, for all the problems of power grid
design, a fast solution is required. We have discovered that
the AI/ML techniques help in fast sign-off of the power grid
design problems.

The contributions of this paper can be extended in several
ways. Some of the possible future research directions are listed
below:

• The machine learning-based proposed works in this paper
uses manual feature engineering. In future, automatic fea-
ture engineering can be employed to further automating
the learning process of the power grid design.

• This paper profoundly concentrated on formulating the
problems as supervised learning problems. In the future,
power grid design problems can be formulated as unsu-
pervised learning problems and solved using the emerging
learning approaches such as Variational Autoencoder,
Generative Adversarial Network etc.

• Other objectives of the power grid design can further be
solved using AI/ML approaches.

• Parallelization techniques can be explored for fast sign-
off of the power grid analysis.

• Thermal Issues of PG Design can be explored.
• Extension of the works to PG Design of 3D IC.
• This paper’s proposed methods can also be extended to

electrical grid design (used for delivering electricity from
producers to consumers), with appropriate changes.
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